Specific Heat of the Anisotropic Rigid Rotator

Anibal O. Caride¹ and Constantino Tsallis¹

Received September 29, 1983; revision received November 10, 1983

The exact (numerical) thermal evolution of the specific heat C of the single anisotropic (not necessarily equal inertial momenta $I_x = I_y \equiv I_{xy}$ and I_z) quantum rigid rotator is calculated. For values of I_{xy}/I_z low enough, C presents an unexpectedly high maximum; for sufficiently high values of I_{xy}/I_z a second peak emerges. Also a quite rich $T \rightarrow 0$ asymptotic behavior is exhibited.

KEY WORDS: Specific heat; anisotropic rigid rotator; quantum statistics; molecular statistics.

Very few quantum systems exist for which the *exact* energy spectrum is known. Among them we have the symmetric top or anisotropic rigid rotator associated with *two* different momenta of inertia $(I_x = I_y \equiv I_{xy} \text{ and } I_z \text{ do} \text{ not necessarily coincide})$. This is an important system as it can account, within a first approximation, for the rotational degrees of freedom of molecules whose inertial ellipsoid is oblate $(I_{xy} > I_z; \text{ e.g., HD, NO, HCl,}$ HCN, SCO) or prolate $(I_{xy} < I_z; \text{ e.g., C}_6H_6)$ or spherical $(I_{xy} = I_z; \text{ e.g.,}$ CH₄). Surprisingly enough, the calculation of the specific heat C of this system has never, as far as we know, been accomplished for all temperatures, excepting of course the $I_{xy}/I_z \rightarrow \infty$ limit which since long is a standard one.⁽¹⁾ The purpose of the present paper is to exhibit the influence of the ratio I_{xy}/I_z on the thermal behavior of C.

The system is characterized by the Hamiltonian

$$\mathscr{H} = \frac{L_x^2 + L_y^2}{2I_{xy}} + \frac{L_z^2}{2I_z}$$
(1)

where L_i (i = x, y, z) are the components of the angular momentum L, $I_x = I_y \equiv I_{xy}$ and I_z being the corresponding momenta of inertia (the ratio

¹ Centro Brasileiro de Pesquisas Físicas/CNPq, Rua Dr. Xavier Sigaud, 150, 22290—Rio de Janeiro, RJ—Brazil.

Caride and Tsallis

 I_{xy}/I_z varies, for the rigid rotator, between 1/2 (extremely prolate) and ∞ (extremely oblate); however, as an obvious analytical extension, we discuss the whole range $[0, \infty]$). The eigenvalues are given⁽²⁾ by

$$E_{l,m} = \frac{\hbar^2}{2} \left[\frac{l(l+1)}{I_{xy}} + \left(\frac{1}{I_z} - \frac{1}{I_{xy}} \right) m^2 \right]$$
(2)

where l = 0, 1, 2, ..., and m = l, l - 1, ..., -l, each level presenting, because of the possible projections of L on the intrinsic rotation axis of the rotator, a (2l + 1) degeneracy (see Ref. 3 for a discussion of the eigenvalues associated with the general case where all three $\{I_i\}$ are arbitrary). Notice that, in both particular cases $I_{xy}/I_z \rightarrow \infty$ (extremely oblate) and $I_{xy}/I_z = 1$ (spherical), the levels follow the l(l + 1) law, but while the former presents a (2l + 1) degeneracy, the later presents a $(2l + 1)^2$ one. In the particular case $I_{xy}/I_z = 0$ the levels are equidistant and present a relatively irregular degeneracy. The canonical partition function Z is given by

$$Z(t) = \sum_{l=0}^{\infty} (2l+1)e^{-l(l+1)/t} \sum_{m=-l}^{l} e^{-(l_{xy}/l_z-1)m^2/t}$$
(3)

where $t \equiv 2I_{xy}k_BT/\hbar^2$. Consequently the specific heat is given by

$$\frac{C}{k_B} = \frac{1}{t^2} \left[\frac{V}{Z} - \left(\frac{W}{Z}\right)^2 \right]$$
(4)

$$V \equiv \sum_{l=0}^{\infty} (2l+1)e^{-l(l+1)/t} \sum_{m=-l}^{l} \left[l(l+1) + \left(\frac{I_{xy}}{I_z} - 1\right)m^2 \right]^2 e^{-(I_{xy}/I_z - 1)m^2/t}$$
$$W \equiv \sum_{l=0}^{\infty} (2l+1)e^{-l(l+1)/t} \sum_{m=-l}^{l} \left[l(l+1) + \left(\frac{I_{xy}}{I_z} - 1\right)m^2 \right] e^{-(I_{xy}/I_z - 1)m^2/t}$$

Through Eq. (4) we have numerically calculated C (see Fig. 1). The most remarkable features are: (i) the existence, for all values of I_{xy}/I_z , of an important peak which becomes sharper and sharper while I_{xy}/I_z decreases (for $I_{xy}/I_z = 0$ the height almost attains $k_B 5/2$); (ii) the appearance, for I_{xy}/I_z high enough, of a second and smaller peak which, in the $I_{xy}/I_z \rightarrow \infty$ limit, becomes the well-known small bump detectable through standard caculation⁽¹⁾; (iii) the fact that, for any finite I_{xy}/I_z ratio, $\lim_{T\to\infty} C = k_B 3/2$ (classical equipartition associated with three degrees of freedom), whereas $\lim_{T\to\infty} \lim_{I_{xy}/I_z\to\infty} C = k_B$ (only two degrees of freedom, the other one being frozen); (iv) the existence of interesting non uniform convergences in the $T \rightarrow 0$ limit, where we verify that

$$\frac{C}{k_B} \sim \frac{6}{t^2} \left[\left(\frac{I_{xy}}{I_z} + 1 \right)^2 e^{-(I_{xy}/I_z + 1)/t} + 2e^{-2/t} \right]$$
(5)

Fig. 1. Reduced specific heat C/k_B as a function of the reduced temperature $t \equiv 2I_{xy}k_BT/\hbar^2$ for typical values of I_{xy}/I_z (numbers parametrizing the curves).

hence (at the leading level)

c

$$\frac{6(I_{xy}/I_z+1)^2}{t^2}e^{-(I_{xy}/I_z+1)/t}, \quad \text{if} \quad 0 \le \frac{I_{xy}}{I_z} < 1 \quad (6a)$$

$$\frac{C}{k_B} \sim \begin{cases} \frac{36}{t^2} e^{-2/t}, & \text{if } \frac{I_{xy}}{I_z} = 1 \end{cases}$$
(6b)

$$\left| \frac{12}{t^2} e^{-2/t}, \qquad \text{if } \frac{I_{xy}}{I_z} > 1 \qquad (6c) \right|$$

The present results could possibly be of utility for testing theoretical nonexact procedures for calculating specific heats, as well as for the analysis of experimental data on rarefied gases.

ACKNOWLEDGMENT

We acknowledge stimulating comments from S. I. Zanette and J. S. Helman.

REFERENCES

- 1. J. E. Mayer and M. G. Mayer, *Statistical Mechanics*, 2nd ed., (John Wiley, New York, 1977), Chap. 7.
- 2. P. R. Bunker, Molecular Symmetry and Spectroscopy, (Academic, New York, 1979), Chap. 8.
- 3. A. O. Caride and S. I. Zanette, J. Chem. Phys. 76:1179 (1982).